Accepted Papers
Orals
-
Multivariable Causal Discovery with General Nonlinear Relationships
Patrik Reizinger, Yash Sharma, Matthias Bethge, Bernhard Schölkopf, Ferenc Huszár, Wieland Brendel -
Abstraction between Structural Causal Models: A Review of Definitions and Properties
Fabio Massimo Zennaro -
Partial Disentanglement via Mechanism Sparsity
Sebastien Lachapelle, Simon Lacoste-Julien -
Causal Class Activation Maps for Weakly-Supervised Semantic Segmentation
Yiping Wang
Posters
-
A Meta-Reinforcement Learning Algorithm for Causal Discovery
Andreas W.M. Sauter, Erman Acar, Vincent Francois-Lavet -
Homomorphism Autoencoder — Learning Group Structured Representations from Interactions
Hamza Keurti, Hsiao-Ru Pan, Michel Besserve, Benjamin F. Grewe, Bernhard Schölkopf -
Function Classes for Identifiable Nonlinear Independent Component Analysis
Simon Buchholz, Michel Besserve, Bernhard Schölkopf -
Learning Causal Representations with Granger PCA
Gherardo Varando, Miguel-Ángel Fernández-Torres, Jordi Muñoz-Marí, Gustau Camps-Valls -
Identifiability of deep generative models under mixture priors without auxiliary information
Bohdan Kivva, Goutham Rajendran, Pradeep Kumar Ravikumar, Bryon Aragam -
Leveraging Structure Between Environments: Phylogenetic Regularization Incentivizes Disentangled Representations
Elliot Layne, Dhanya Sridhar, Jason Hartford, Mathieu Blanchette -
Invariance-Based Causal Estimation in the Presence of Concept Drift
Katie Matton, John Guttag, Rosalind Picard -
Weather2vec: Representation Learning for Causal Inference with Non-Local Confounding in Air Pollution and Climate Studies
Mauricio Tec, James G. Scott, Corwin Zigler -
Explanatory World Models via Look Ahead Attention for Credit Assignment
Oriol Corcoll, Raul Vicente -
Selection Collider Bias in Large Language Models
Emily McMilin -
Towards a Grounded Theory of Causation for Embodied AI
Taco Cohen -
Probing the Robustness of Independent Mechanism Analysis for Representation Learning
Joanna Sliwa, Shubhangi Ghosh, Vincent Stimper, Luigi Gresele, Bernhard Schölkopf -
Bias Challenges in Counterfactual Data Augmentation
S. Chandra Mouli, Yangze Zhou, Bruno Ribeiro -
Towards Computing an Optimal Abstraction for Structural Causal Models
Fabio Massimo Zennaro, Paolo Turrini, Theo Damoulas -
Structure by Architecture: Disentangled Representations without Regularization
Felix Leeb, Giulia Lanzillotta, Yashas Annadani, Michel Besserve, Stefan Bauer, Bernhard Schölkopf -
SlotFormer: Long-Term Dynamic Modeling in Object-Centric Models
Ziyi Wu, Nikita Dvornik, Klaus Greff, Jiaqi Xi, Thomas Kipf, Animesh Garg -
Can Large Language Models Distinguish Causal and Anticausal Relations?
Zhiheng Lyu, Zhijing Jin, Rada Mihalcea, Mrinmaya Sachan, Bernhard Schölkopf -
iCITRIS: Causal Representation Learning for Instantaneous Temporal Effects
Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M. Asano, Taco Cohen, Efstratios Gavves -
Estimating Categorical Counterfactuals via Deep Twin Networks
Athanasios Vlontzos, Bernhard Kainz, Ciarán Mark Gilligan-Lee -
Intervention Design for Causal Representation Learning
Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M. Asano, Taco Cohen, Efstratios Gavves -
Inductive Biases for Object-Centric Representations in the Presence of Complex Textures
Samuele Papa, Ole Winther, Andrea Dittadi -
Weakly supervised causal representation learning
Johann Brehmer, Pim De Haan, Phillip Lippe, Taco Cohen -
Causal Discovery from Conditionally Stationary Time Series
Carles Balsells Rodas, Ruibo Tu, Yingzhen Li, Hedvig Kjellstrom -
BaCaDI: Bayesian Causal Discovery with Unknown Interventions
Alexander Hägele, Jonas Rothfuss, Lars Lorch, Vignesh Ram Somnath, Bernhard Schölkopf, Andreas Krause -
On the DCI Framework for Evaluating Disentangled Representations: Extensions and Connections to Identifiability
Cian Eastwood, Andrei Liviu Nicolicioiu, Julius Von Kügelgen, Armin Kekic, Frederik Träuble, Andrea Dittadi, Bernhard Schölkopf -
GlanceNets: Interpretabile, Leak-proof Concept-based Models
Emanuele Marconato, Andrea Passerini, Stefano Teso -
Object-based Active Inference
Ruben van Bergen, Pablo Lanillos -
Can Foundation Models Talk Causality?
Moritz Willig, Matej Zečević, Devendra Singh Dhami, Kristian Kersting